Ba(HCO3)2 + 2HBr → BaBr2 + 2H2CO3
Last updated:
The reaction of barium hydrogencarbonate and hydrogen bromide yields barium bromide and carbonic acid (Other reactions are here). This reaction is an acid-base reaction and is classified as follows:
Table of contents
Reaction data
Chemical equation
- Reaction of barium hydrogencarbonate and hydrogen bromide
General equation
- Salt of weak acidBrønsted base + Strong acidBrønsted acid ⟶ Salt of strong acidConjugate base + Weak acidConjugate acid
Oxidation state of each atom
- Reaction of barium hydrogencarbonate and hydrogen bromide
Reactants
Chemical formula | Name | Coefficient | Type | Type in general equation |
---|---|---|---|---|
Ba(HCO3)2 | Barium hydrogencarbonate | 1 | Brønsted base | Salt of weak acid |
HBr | Hydrogen bromide | 2 | Brønsted acid | Strong acid |
Products
Chemical formula | Name | Coefficient | Type | Type in general equation |
---|---|---|---|---|
BaBr2 | Barium bromide | 1 | Conjugate base | Salt of strong acid |
H2CO3 | Carbonic acid | 2 | Conjugate acid | Weak acid |
Thermodynamic changes
Changes in standard condition
- Reaction of barium hydrogencarbonate and hydrogen bromide◆
ΔrG −72.62 kJ/mol K 5.28 × 1012 pK −12.72
Standard enthalpy of reaction ΔrH° kJ · mol−1 | Standard Gibbs energy of reaction ΔrG° kJ · mol−1 | Standard entropy of reaction ΔrS° J · K−1 · mol−1 | Standard heat capacity of reaction at constant pressure ΔrCp° J · K−1 · mol−1 | |
---|---|---|---|---|
per 1 mol of Equation | −15.30 | −72.62 | 192.5 | – |
per 1 mol of | −15.30 | −72.62 | 192.5 | – |
per 1 mol of | −7.650 | −36.31 | 96.25 | – |
per 1 mol of | −15.30 | −72.62 | 192.5 | – |
per 1 mol of | −7.650 | −36.31 | 96.25 | – |
Thermodynamic data of reactants
Chemical formula | Standard enthalpy of formation ΔfH° kJ · mol−1 | Standard Gibbs energy of formation ΔfG° kJ · mol−1 | Standard molar entropy S° J · K−1 · mol−1 | Standard molar heat capacity at constant pressure Cp° J · K−1 · mol−1 |
---|---|---|---|---|
Ba(HCO3)2 (ai) | -1921.63[1] | -1734.30[1] | 192.0[1] | – |
HBr (g) | -36.40[1] | -53.45[1] | 198.695[1] | 29.142[1] |
HBr (ai) | -121.55[1] | -103.96[1] | 82.4[1] | -141.8[1] |
* (ai):Ionized aqueous solution, (g):Gas
Thermodynamic data of products
Chemical formula | Standard enthalpy of formation ΔfH° kJ · mol−1 | Standard Gibbs energy of formation ΔfG° kJ · mol−1 | Standard molar entropy S° J · K−1 · mol−1 | Standard molar heat capacity at constant pressure Cp° J · K−1 · mol−1 |
---|---|---|---|---|
BaBr2 (cr) | -757.3[1] | -736.8[1] | 146[1] | – |
BaBr2 (g) | -439[1] | -473[1] | 331[1] | 61.5[1] |
BaBr2 (ai) | -780.73[1] | -768.68[1] | 174.5[1] | – |
BaBr2 (cr) 1 hydrate | -1068.2[1] | – | – | – |
BaBr2 (cr) 2 hydrate | -1366.1[1] | -1230.4[1] | 226[1] | – |
H2CO3 (ao) | -699.65[1] | -623.08[1] | 187.4[1] | – |
* (cr):Crystalline solid, (g):Gas, (ai):Ionized aqueous solution, (ao):Un-ionized aqueous solution
References
List of references
- 1Janiel J. Reed (1989)The NBS Tables of Chemical Thermodynamic Properties: Selected Values for Inorganic and C1 and C2 Organic Substances in SI UnitsNational Institute of Standards and Technology (NIST)
- ^ ΔfH°, -1921.63 kJ · mol−1
- ^ ΔfG°, -1734.30 kJ · mol−1
- ^ S°, 192.0 J · K−1 · mol−1
- ^ ΔfH°, -36.40 kJ · mol−1
- ^ ΔfG°, -53.45 kJ · mol−1
- ^ S°, 198.695 J · K−1 · mol−1
- ^ Cp°, 29.142 J · K−1 · mol−1
- ^ ΔfH°, -121.55 kJ · mol−1
- ^ ΔfG°, -103.96 kJ · mol−1
- ^ S°, 82.4 J · K−1 · mol−1
- ^ Cp°, -141.8 J · K−1 · mol−1
- ^ ΔfH°, -757.3 kJ · mol−1
- ^ ΔfG°, -736.8 kJ · mol−1
- ^ S°, 146. J · K−1 · mol−1
- ^ ΔfH°, -439. kJ · mol−1
- ^ ΔfG°, -473. kJ · mol−1
- ^ S°, 331. J · K−1 · mol−1
- ^ Cp°, 61.5 J · K−1 · mol−1
- ^ ΔfH°, -780.73 kJ · mol−1
- ^ ΔfG°, -768.68 kJ · mol−1
- ^ S°, 174.5 J · K−1 · mol−1
- ^ ΔfH°, -1068.2 kJ · mol−1
- ^ ΔfH°, -1366.1 kJ · mol−1
- ^ ΔfG°, -1230.4 kJ · mol−1
- ^ S°, 226. J · K−1 · mol−1
- ^ ΔfH°, -699.65 kJ · mol−1
- ^ ΔfG°, -623.08 kJ · mol−1
- ^ S°, 187.4 J · K−1 · mol−1