Sn + H4SiO4 → SnO2 + SiO2 + 2H2↑
Last updated:
The reaction of and silicic acid yields tin(IV) oxide, silicon dioxide, and (Other reactions are here). This reaction is an oxidation-reduction reaction and is classified as follows:
Table of contents
Reaction data
Chemical equation
General equation
- Reaction of reducing species and reducible species
- Reducing speciesReducing agent + Reducible speciesOxidizing agent ⟶ ProductOxidation product + ProductReduction product
Oxidation state of each atom
Reactants
Chemical formula | Name | Coefficient | Type | Type in general equation |
---|---|---|---|---|
1 | Reducing | Reducing | ||
H4SiO4 | Silicic acid | 1 | Oxidizing | Reducible |
Products
Chemical formula | Name | Coefficient | Type | Type in general equation |
---|---|---|---|---|
SnO2 | Tin(IV) oxide | 1 | Oxidized | – |
SiO2 | Silicon dioxide | 1 | – | – |
2 | Reduced | – |
Thermodynamic changes
Changes in standard condition (1)
Standard enthalpy of reaction ΔrH° kJ · mol−1 | Standard Gibbs energy of reaction ΔrG° kJ · mol−1 | Standard entropy of reaction ΔrS° J · K−1 · mol−1 | Standard heat capacity of reaction at constant pressure ΔrCp° J · K−1 · mol−1 | |
---|---|---|---|---|
per 1 mol of Equation | −10.5 | −43.3 | 112 | – |
−10.5 | −43.3 | 112 | – | |
per 1 mol of Silicic acid | −10.5 | −43.3 | 112 | – |
per 1 mol of | −10.5 | −43.3 | 112 | – |
per 1 mol of | −10.5 | −43.3 | 112 | – |
−5.25 | −21.6 | 56.0 | – |
Changes in standard condition (2)
Standard enthalpy of reaction ΔrH° kJ · mol−1 | Standard Gibbs energy of reaction ΔrG° kJ · mol−1 | Standard entropy of reaction ΔrS° J · K−1 · mol−1 | Standard heat capacity of reaction at constant pressure ΔrCp° J · K−1 · mol−1 | |
---|---|---|---|---|
per 1 mol of Equation | −9.1 | −42.1 | 113 | – |
−9.1 | −42.1 | 113 | – | |
per 1 mol of Silicic acid | −9.1 | −42.1 | 113 | – |
per 1 mol of | −9.1 | −42.1 | 113 | – |
per 1 mol of | −9.1 | −42.1 | 113 | – |
−4.5 | −21.1 | 56.5 | – |
Changes in standard condition (3)
Standard enthalpy of reaction ΔrH° kJ · mol−1 | Standard Gibbs energy of reaction ΔrG° kJ · mol−1 | Standard entropy of reaction ΔrS° J · K−1 · mol−1 | Standard heat capacity of reaction at constant pressure ΔrCp° J · K−1 · mol−1 | |
---|---|---|---|---|
per 1 mol of Equation | −8.7 | −42.0 | 114 | – |
−8.7 | −42.0 | 114 | – | |
per 1 mol of Silicic acid | −8.7 | −42.0 | 114 | – |
per 1 mol of | −8.7 | −42.0 | 114 | – |
per 1 mol of | −8.7 | −42.0 | 114 | – |
−4.3 | −21.0 | 57.0 | – |
Changes in standard condition (4)
Standard enthalpy of reaction ΔrH° kJ · mol−1 | Standard Gibbs energy of reaction ΔrG° kJ · mol−1 | Standard entropy of reaction ΔrS° J · K−1 · mol−1 | Standard heat capacity of reaction at constant pressure ΔrCp° J · K−1 · mol−1 | |
---|---|---|---|---|
per 1 mol of Equation | −3.1 | −37.4 | 117 | – |
−3.1 | −37.4 | 117 | – | |
per 1 mol of Silicic acid | −3.1 | −37.4 | 117 | – |
per 1 mol of | −3.1 | −37.4 | 117 | – |
per 1 mol of | −3.1 | −37.4 | 117 | – |
−1.6 | −18.7 | 58.5 | – |
Changes in standard condition (5)
Standard enthalpy of reaction ΔrH° kJ · mol−1 | Standard Gibbs energy of reaction ΔrG° kJ · mol−1 | Standard entropy of reaction ΔrS° J · K−1 · mol−1 | Standard heat capacity of reaction at constant pressure ΔrCp° J · K−1 · mol−1 | |
---|---|---|---|---|
per 1 mol of Equation | −8.5 | −43.5 | 119 | – |
−8.5 | −43.5 | 119 | – | |
per 1 mol of Silicic acid | −8.5 | −43.5 | 119 | – |
per 1 mol of | −8.5 | −43.5 | 119 | – |
per 1 mol of | −8.5 | −43.5 | 119 | – |
−4.3 | −21.8 | 59.5 | – |
Changes in standard condition (6)
Standard enthalpy of reaction ΔrH° kJ · mol−1 | Standard Gibbs energy of reaction ΔrG° kJ · mol−1 | Standard entropy of reaction ΔrS° J · K−1 · mol−1 | Standard heat capacity of reaction at constant pressure ΔrCp° J · K−1 · mol−1 | |
---|---|---|---|---|
per 1 mol of Equation | −7.0 | −42.3 | 120 | – |
−7.0 | −42.3 | 120 | – | |
per 1 mol of Silicic acid | −7.0 | −42.3 | 120 | – |
per 1 mol of | −7.0 | −42.3 | 120 | – |
per 1 mol of | −7.0 | −42.3 | 120 | – |
−3.5 | −21.1 | 60.0 | – |
Changes in standard condition (7)
Standard enthalpy of reaction ΔrH° kJ · mol−1 | Standard Gibbs energy of reaction ΔrG° kJ · mol−1 | Standard entropy of reaction ΔrS° J · K−1 · mol−1 | Standard heat capacity of reaction at constant pressure ΔrCp° J · K−1 · mol−1 | |
---|---|---|---|---|
per 1 mol of Equation | −6.6 | −42.1 | 121 | – |
−6.6 | −42.1 | 121 | – | |
per 1 mol of Silicic acid | −6.6 | −42.1 | 121 | – |
per 1 mol of | −6.6 | −42.1 | 121 | – |
per 1 mol of | −6.6 | −42.1 | 121 | – |
−3.3 | −21.1 | 60.5 | – |
Changes in standard condition (8)
Standard enthalpy of reaction ΔrH° kJ · mol−1 | Standard Gibbs energy of reaction ΔrG° kJ · mol−1 | Standard entropy of reaction ΔrS° J · K−1 · mol−1 | Standard heat capacity of reaction at constant pressure ΔrCp° J · K−1 · mol−1 | |
---|---|---|---|---|
per 1 mol of Equation | −1.0 | −37.5 | 124 | – |
−1.0 | −37.5 | 124 | – | |
per 1 mol of Silicic acid | −1.0 | −37.5 | 124 | – |
per 1 mol of | −1.0 | −37.5 | 124 | – |
per 1 mol of | −1.0 | −37.5 | 124 | – |
−0.50 | −18.8 | 62.0 | – |
Changes in aqueous solution (1)
Standard enthalpy of reaction ΔrH° kJ · mol−1 | Standard Gibbs energy of reaction ΔrG° kJ · mol−1 | Standard entropy of reaction ΔrS° J · K−1 · mol−1 | Standard heat capacity of reaction at constant pressure ΔrCp° J · K−1 · mol−1 | |
---|---|---|---|---|
per 1 mol of Equation | −9.1 | – | – | – |
−9.1 | – | – | – | |
per 1 mol of Silicic acid | −9.1 | – | – | – |
per 1 mol of | −9.1 | – | – | – |
per 1 mol of | −9.1 | – | – | – |
−4.5 | – | – | – |
Changes in aqueous solution (2)
Standard enthalpy of reaction ΔrH° kJ · mol−1 | Standard Gibbs energy of reaction ΔrG° kJ · mol−1 | Standard entropy of reaction ΔrS° J · K−1 · mol−1 | Standard heat capacity of reaction at constant pressure ΔrCp° J · K−1 · mol−1 | |
---|---|---|---|---|
per 1 mol of Equation | −17.5 | – | – | – |
−17.5 | – | – | – | |
per 1 mol of Silicic acid | −17.5 | – | – | – |
per 1 mol of | −17.5 | – | – | – |
per 1 mol of | −17.5 | – | – | – |
−8.75 | – | – | – |
Thermodynamic data of reactants
Chemical formula | Standard enthalpy of formation ΔfH° kJ · mol−1 | Standard Gibbs energy of formation ΔfG° kJ · mol−1 | Standard molar entropy S° J · K−1 · mol−1 | Standard molar heat capacity at constant pressure Cp° J · K−1 · mol−1 |
---|---|---|---|---|
(cr) white | 0[1] | 0[1] | 51.55[1] | 26.99[1] |
(cr) gray | -2.09[1] | 0.13[1] | 44.14[1] | 25.77[1] |
(g) | 302.1[1] | 267.3[1] | 168.486[1] | 21.259[1] |
H4SiO4 (cr) | -1481.1[1] | -1332.9[1] | 192[1] | – |
H4SiO4 (ao) | -1468.6[1] | -1316.6[1] | 180[1] | – |
* (cr):Crystalline solid, (g):Gas, (ao):Un-ionized aqueous solution
Thermodynamic data of products
Chemical formula | Standard enthalpy of formation ΔfH° kJ · mol−1 | Standard Gibbs energy of formation ΔfG° kJ · mol−1 | Standard molar entropy S° J · K−1 · mol−1 | Standard molar heat capacity at constant pressure Cp° J · K−1 · mol−1 |
---|---|---|---|---|
SnO2 (cr) | -580.7[1] | -519.6[1] | 52.3[1] | 52.59[1] |
SiO2 (cr) α-quartz | -910.94[1] | -856.64[1] | 41.84[1] | 44.43[1] |
SiO2 (cr) α-cristobalite | -909.48[1] | -855.43[1] | 42.68[1] | 44.18[1] |
SiO2 (cr) α-tridymite | -909.06[1] | -855.26[1] | 43.5[1] | 44.60[1] |
SiO2 (am) | -903.49[1] | -850.70[1] | 46.9[1] | 44.4[1] |
SiO2 (g) | -322[1] | – | – | – |
SiO2 (ao) | -897.0[1] | – | – | – |
(g) | 0[1] | 0[1] | 130.684[1] | 28.824[1] |
(ao) | -4.2[1] | 17.6[1] | 577[1] | – |
* (cr):Crystalline solid, (am):Amorphous solid, (g):Gas, (ao):Un-ionized aqueous solution
References
List of references
- 1Janiel J. Reed (1989)The NBS Tables of Chemical Thermodynamic Properties: Selected Values for Inorganic and C1 and C2 Organic Substances in SI UnitsNational Institute of Standards and Technology (NIST)
- ^ ΔfH°, 0 kJ · mol−1
- ^ ΔfG°, 0 kJ · mol−1
- ^ S°, 51.55 J · K−1 · mol−1
- ^ Cp°, 26.99 J · K−1 · mol−1
- ^ ΔfH°, -2.09 kJ · mol−1
- ^ ΔfG°, 0.13 kJ · mol−1
- ^ S°, 44.14 J · K−1 · mol−1
- ^ Cp°, 25.77 J · K−1 · mol−1
- ^ ΔfH°, 302.1 kJ · mol−1
- ^ ΔfG°, 267.3 kJ · mol−1
- ^ S°, 168.486 J · K−1 · mol−1
- ^ Cp°, 21.259 J · K−1 · mol−1
- ^ ΔfH°, -1481.1 kJ · mol−1
- ^ ΔfG°, -1332.9 kJ · mol−1
- ^ S°, 192. J · K−1 · mol−1
- ^ ΔfH°, -1468.6 kJ · mol−1
- ^ ΔfG°, -1316.6 kJ · mol−1
- ^ S°, 180. J · K−1 · mol−1
- ^ ΔfH°, -580.7 kJ · mol−1
- ^ ΔfG°, -519.6 kJ · mol−1
- ^ S°, 52.3 J · K−1 · mol−1
- ^ Cp°, 52.59 J · K−1 · mol−1
- ^ ΔfH°, -910.94 kJ · mol−1
- ^ ΔfG°, -856.64 kJ · mol−1
- ^ S°, 41.84 J · K−1 · mol−1
- ^ Cp°, 44.43 J · K−1 · mol−1
- ^ ΔfH°, -909.48 kJ · mol−1
- ^ ΔfG°, -855.43 kJ · mol−1
- ^ S°, 42.68 J · K−1 · mol−1
- ^ Cp°, 44.18 J · K−1 · mol−1
- ^ ΔfH°, -909.06 kJ · mol−1
- ^ ΔfG°, -855.26 kJ · mol−1
- ^ S°, 43.5 J · K−1 · mol−1
- ^ Cp°, 44.60 J · K−1 · mol−1
- ^ ΔfH°, -903.49 kJ · mol−1
- ^ ΔfG°, -850.70 kJ · mol−1
- ^ S°, 46.9 J · K−1 · mol−1
- ^ Cp°, 44.4 J · K−1 · mol−1
- ^ ΔfH°, -322. kJ · mol−1
- ^ ΔfH°, -897.0 kJ · mol−1
- ^ ΔfH°, 0 kJ · mol−1
- ^ ΔfG°, 0 kJ · mol−1
- ^ S°, 130.684 J · K−1 · mol−1
- ^ Cp°, 28.824 J · K−1 · mol−1
- ^ ΔfH°, -4.2 kJ · mol−1
- ^ ΔfG°, 17.6 kJ · mol−1
- ^ S°, 577 J · K−1 · mol−1