3KHCO3 + H3AsO4 🔥→ K3AsO4 + 3CO2↑ + 3H2O
Last updated:
The reaction of potassium hydrogencarbonate and arsenic acid yields potassium arsenate, carbon dioxide, and water (Other reactions are here). This reaction is an acid-base reaction and is classified as follows:
Table of contents
Reaction data
Chemical equation
- Reaction of potassium hydrogencarbonate and arsenic acid
General equation
- Salt of volatile acidBrønsted base + Nonvolatile acidBrønsted acid ⟶ Salt of non volatile acidConjugate base + Volatile acidic oxide + H2OConjugate acid
Oxidation state of each atom
- Reaction of potassium hydrogencarbonate and arsenic acid
Reactants
Chemical formula | Name | Coefficient | Type | Type in general equation |
---|---|---|---|---|
KHCO3 | Potassium hydrogencarbonate | 3 | Brønsted base | Salt of volatile acid |
H3AsO4 | Arsenic acid | 1 | Brønsted acid | Nonvolatile acid |
Products
Chemical formula | Name | Coefficient | Type | Type in general equation |
---|---|---|---|---|
K3AsO4 | Potassium arsenate | 1 | Conjugate base | Salt of non volatile acid |
CO2 | Carbon dioxide | 3 | – | Volatile acidic oxide |
H2O | Water | 3 | Conjugate acid | Water |
Thermodynamic changes
Changes in aqueous solution (1)
- Reaction of potassium hydrogencarbonate and arsenic acid◆
ΔrG −16.6 kJ/mol K 8.09 × 102 pK −2.91
Standard enthalpy of reaction ΔrH° kJ · mol−1 | Standard Gibbs energy of reaction ΔrG° kJ · mol−1 | Standard entropy of reaction ΔrS° J · K−1 · mol−1 | Standard heat capacity of reaction at constant pressure ΔrCp° J · K−1 · mol−1 | |
---|---|---|---|---|
per 1 mol of Equation | 52.3 | −16.6 | 231 | – |
per 1 mol of | 17.4 | −5.53 | 77.0 | – |
per 1 mol of | 52.3 | −16.6 | 231 | – |
per 1 mol of | 52.3 | −16.6 | 231 | – |
per 1 mol of | 17.4 | −5.53 | 77.0 | – |
per 1 mol of | 17.4 | −5.53 | 77.0 | – |
Changes in aqueous solution (2)
- Reaction of potassium hydrogencarbonate and arsenic acid◆
ΔrG 8.6 kJ/mol K 0.31 × 10−1 pK 1.51
Standard enthalpy of reaction ΔrH° kJ · mol−1 | Standard Gibbs energy of reaction ΔrG° kJ · mol−1 | Standard entropy of reaction ΔrS° J · K−1 · mol−1 | Standard heat capacity of reaction at constant pressure ΔrCp° J · K−1 · mol−1 | |
---|---|---|---|---|
per 1 mol of Equation | −8.5 | 8.6 | −58 | – |
per 1 mol of | −2.8 | 2.9 | −19 | – |
per 1 mol of | −8.5 | 8.6 | −58 | – |
per 1 mol of | −8.5 | 8.6 | −58 | – |
per 1 mol of | −2.8 | 2.9 | −19 | – |
per 1 mol of | −2.8 | 2.9 | −19 | – |
Changes in aqueous solution (3)
- Reaction of potassium hydrogencarbonate and arsenic acid
Standard enthalpy of reaction ΔrH° kJ · mol−1 | Standard Gibbs energy of reaction ΔrG° kJ · mol−1 | Standard entropy of reaction ΔrS° J · K−1 · mol−1 | Standard heat capacity of reaction at constant pressure ΔrCp° J · K−1 · mol−1 | |
---|---|---|---|---|
per 1 mol of Equation | 54.4 | – | – | – |
per 1 mol of | 18.1 | – | – | – |
per 1 mol of | 54.4 | – | – | – |
per 1 mol of | 54.4 | – | – | – |
per 1 mol of | 18.1 | – | – | – |
per 1 mol of | 18.1 | – | – | – |
Changes in aqueous solution (4)
- Reaction of potassium hydrogencarbonate and arsenic acid
Standard enthalpy of reaction ΔrH° kJ · mol−1 | Standard Gibbs energy of reaction ΔrG° kJ · mol−1 | Standard entropy of reaction ΔrS° J · K−1 · mol−1 | Standard heat capacity of reaction at constant pressure ΔrCp° J · K−1 · mol−1 | |
---|---|---|---|---|
per 1 mol of Equation | −6.5 | – | – | – |
per 1 mol of | −2.2 | – | – | – |
per 1 mol of | −6.5 | – | – | – |
per 1 mol of | −6.5 | – | – | – |
per 1 mol of | −2.2 | – | – | – |
per 1 mol of | −2.2 | – | – | – |
Thermodynamic data of reactants
Chemical formula | Standard enthalpy of formation ΔfH° kJ · mol−1 | Standard Gibbs energy of formation ΔfG° kJ · mol−1 | Standard molar entropy S° J · K−1 · mol−1 | Standard molar heat capacity at constant pressure Cp° J · K−1 · mol−1 |
---|---|---|---|---|
KHCO3 (cr) | -963.2[1] | -863.5[1] | 115.5[1] | – |
KHCO3 (ai) | -944.37[1] | -870.04[1] | 193.7[1] | – |
H3AsO4 (cr) | -906.3[1] | – | – | – |
H3AsO4 (ao) | -902.5[1] | -766.0[1] | 184[1] | – |
H3AsO4 (aq) | -904.6[1] | – | – | – |
* (cr):Crystalline solid, (ai):Ionized aqueous solution, (ao):Un-ionized aqueous solution, (aq):Aqueous solution
Thermodynamic data of products
Chemical formula | Standard enthalpy of formation ΔfH° kJ · mol−1 | Standard Gibbs energy of formation ΔfG° kJ · mol−1 | Standard molar entropy S° J · K−1 · mol−1 | Standard molar heat capacity at constant pressure Cp° J · K−1 · mol−1 |
---|---|---|---|---|
K3AsO4 (ai) | -1645.27[1] | -1498.23[1] | 144.8[1] | – |
CO2 (g) | -393.509[1] | -394.359[1] | 213.74[1] | 37.11[1] |
CO2 (ao) | -413.80[1] | -385.98[1] | 117.6[1] | – |
H2O (cr) | – | – | – | – |
H2O (l) | -285.830[1] | -237.129[1] | 69.91[1] | 75.291[1] |
H2O (g) | -241.818[1] | -228.572[1] | 188.825[1] | 33.577[1] |
* (ai):Ionized aqueous solution, (g):Gas, (ao):Un-ionized aqueous solution, (cr):Crystalline solid, (l):Liquid
References
List of references
- 1Janiel J. Reed (1989)The NBS Tables of Chemical Thermodynamic Properties: Selected Values for Inorganic and C1 and C2 Organic Substances in SI UnitsNational Institute of Standards and Technology (NIST)
- ^ ΔfH°, -963.2 kJ · mol−1
- ^ ΔfG°, -863.5 kJ · mol−1
- ^ S°, 115.5 J · K−1 · mol−1
- ^ ΔfH°, -944.37 kJ · mol−1
- ^ ΔfG°, -870.04 kJ · mol−1
- ^ S°, 193.7 J · K−1 · mol−1
- ^ ΔfH°, -906.3 kJ · mol−1
- ^ ΔfH°, -902.5 kJ · mol−1
- ^ ΔfG°, -766.0 kJ · mol−1
- ^ S°, 184. J · K−1 · mol−1
- ^ ΔfH°, -904.6 kJ · mol−1
- ^ ΔfH°, -1645.27 kJ · mol−1
- ^ ΔfG°, -1498.23 kJ · mol−1
- ^ S°, 144.8 J · K−1 · mol−1
- ^ ΔfH°, -393.509 kJ · mol−1
- ^ ΔfG°, -394.359 kJ · mol−1
- ^ S°, 213.74 J · K−1 · mol−1
- ^ Cp°, 37.11 J · K−1 · mol−1
- ^ ΔfH°, -413.80 kJ · mol−1
- ^ ΔfG°, -385.98 kJ · mol−1
- ^ S°, 117.6 J · K−1 · mol−1
- ^ ΔfH°, -285.830 kJ · mol−1
- ^ ΔfG°, -237.129 kJ · mol−1
- ^ S°, 69.91 J · K−1 · mol−1
- ^ Cp°, 75.291 J · K−1 · mol−1
- ^ ΔfH°, -241.818 kJ · mol−1
- ^ ΔfG°, -228.572 kJ · mol−1
- ^ S°, 188.825 J · K−1 · mol−1
- ^ Cp°, 33.577 J · K−1 · mol−1