(NH4)2S2O3 💧⚡→ N2H4 + 2H2S↑ + O3↑
Last updated:
- Electrolysis of aqueous ammonium thiosulfate without water as reactant
Electrolysis of aqueous ammonium thiosulfate yields hydrazine, hydrogen sulfide, and (Other reactions are here). This reaction is an oxidation-reduction reaction and is classified as follows:
Table of contents
Reaction data
Chemical equation
- Electrolysis of aqueous ammonium thiosulfate without water as reactant
General equation
- Electrolysis of aqueous solution without water as reactant
- Miscible with water/Very soluble in water/Soluble in waterSelf redox agent💧⚡⟶ ProductOxidation product + ProductReduction product
Oxidation state of each atom
- Electrolysis of aqueous ammonium thiosulfate without water as reactant
Reactants
Chemical formula | Name | Coefficient | Type | Type in general equation |
---|---|---|---|---|
(NH4)2S2O3 | Ammonium thiosulfate | 1 | Self redox agent | Soluble in water |
Products
Chemical formula | Name | Coefficient | Type | Type in general equation |
---|---|---|---|---|
N2H4 | Hydrazine | 1 | Oxidized | – |
H2S | Hydrogen sulfide | 2 | Reduced | – |
1 | Oxidized | – |
Thermodynamic changes
Changes in aqueous solution (1)
- Electrolysis of aqueous ammonium thiosulfate without water as reactant
Standard enthalpy of reaction ΔrH° kJ · mol−1 | Standard Gibbs energy of reaction ΔrG° kJ · mol−1 | Standard entropy of reaction ΔrS° J · K−1 · mol−1 | Standard heat capacity of reaction at constant pressure ΔrCp° J · K−1 · mol−1 | |
---|---|---|---|---|
per 1 mol of Equation | 1052.9 | – | – | – |
per 1 mol of | 1052.9 | – | – | – |
per 1 mol of | 1052.9 | – | – | – |
per 1 mol of | 526.45 | – | – | – |
1052.9 | – | – | – |
Changes in aqueous solution (2)
- Electrolysis of aqueous ammonium thiosulfate without water as reactant
- (NH4)2S2O3Aqueous solutionN2H4Un-ionized aqueous solution + 2H2S↑Gas + ↑Un-ionized aqueous solution💧⚡⟶
Standard enthalpy of reaction ΔrH° kJ · mol−1 | Standard Gibbs energy of reaction ΔrG° kJ · mol−1 | Standard entropy of reaction ΔrS° J · K−1 · mol−1 | Standard heat capacity of reaction at constant pressure ΔrCp° J · K−1 · mol−1 | |
---|---|---|---|---|
per 1 mol of Equation | 1036.1 | – | – | – |
per 1 mol of | 1036.1 | – | – | – |
per 1 mol of | 1036.1 | – | – | – |
per 1 mol of | 518.05 | – | – | – |
1036.1 | – | – | – |
Changes in aqueous solution (3)
- Electrolysis of aqueous ammonium thiosulfate without water as reactant
- (NH4)2S2O3Aqueous solutionN2H4Un-ionized aqueous solution + 2H2S↑Un-ionized aqueous solution + ↑Gas💧⚡⟶
Standard enthalpy of reaction ΔrH° kJ · mol−1 | Standard Gibbs energy of reaction ΔrG° kJ · mol−1 | Standard entropy of reaction ΔrS° J · K−1 · mol−1 | Standard heat capacity of reaction at constant pressure ΔrCp° J · K−1 · mol−1 | |
---|---|---|---|---|
per 1 mol of Equation | 1014.7 | – | – | – |
per 1 mol of | 1014.7 | – | – | – |
per 1 mol of | 1014.7 | – | – | – |
per 1 mol of | 507.35 | – | – | – |
1014.7 | – | – | – |
Changes in aqueous solution (4)
- Electrolysis of aqueous ammonium thiosulfate without water as reactant
- (NH4)2S2O3Aqueous solutionN2H4Un-ionized aqueous solution + 2H2S↑Un-ionized aqueous solution + ↑Un-ionized aqueous solution💧⚡⟶
Standard enthalpy of reaction ΔrH° kJ · mol−1 | Standard Gibbs energy of reaction ΔrG° kJ · mol−1 | Standard entropy of reaction ΔrS° J · K−1 · mol−1 | Standard heat capacity of reaction at constant pressure ΔrCp° J · K−1 · mol−1 | |
---|---|---|---|---|
per 1 mol of Equation | 997.9 | – | – | – |
per 1 mol of | 997.9 | – | – | – |
per 1 mol of | 997.9 | – | – | – |
per 1 mol of | 498.9 | – | – | – |
997.9 | – | – | – |
Thermodynamic data of reactants
Chemical formula | Standard enthalpy of formation ΔfH° kJ · mol−1 | Standard Gibbs energy of formation ΔfG° kJ · mol−1 | Standard molar entropy S° J · K−1 · mol−1 | Standard molar heat capacity at constant pressure Cp° J · K−1 · mol−1 |
---|---|---|---|---|
(NH4)2S2O3 (aq) | -917.1[1] | – | – | – |
* (aq):Aqueous solution
Thermodynamic data of products
Chemical formula | Standard enthalpy of formation ΔfH° kJ · mol−1 | Standard Gibbs energy of formation ΔfG° kJ · mol−1 | Standard molar entropy S° J · K−1 · mol−1 | Standard molar heat capacity at constant pressure Cp° J · K−1 · mol−1 |
---|---|---|---|---|
N2H4 (l) | 50.63[1] | 149.34[1] | 121.21[1] | 98.87[1] |
N2H4 (g) | 95.40[1] | 159.35[1] | 238.47[1] | 49.58[1] |
N2H4 (ao) | 34.31[1] | 128.1[1] | 138[1] | – |
H2S (g) | -20.63[1] | -33.56[1] | 205.79[1] | 34.23[1] |
H2S (ao) | -39.7[1] | -27.83[1] | 121[1] | – |
(g) | 142.7[1] | 163.2[1] | 238.93[1] | 39.20[1] |
(ao) | 125.9[1] | 174.1[1] | 146[1] | – |
* (l):Liquid, (g):Gas, (ao):Un-ionized aqueous solution
References
List of references
- 1Janiel J. Reed (1989)The NBS Tables of Chemical Thermodynamic Properties: Selected Values for Inorganic and C1 and C2 Organic Substances in SI UnitsNational Institute of Standards and Technology (NIST)
- ^ ΔfH°, -917.1 kJ · mol−1
- ^ ΔfH°, 50.63 kJ · mol−1
- ^ ΔfG°, 149.34 kJ · mol−1
- ^ S°, 121.21 J · K−1 · mol−1
- ^ Cp°, 98.87 J · K−1 · mol−1
- ^ ΔfH°, 95.40 kJ · mol−1
- ^ ΔfG°, 159.35 kJ · mol−1
- ^ S°, 238.47 J · K−1 · mol−1
- ^ Cp°, 49.58 J · K−1 · mol−1
- ^ ΔfH°, 34.31 kJ · mol−1
- ^ ΔfG°, 128.1 kJ · mol−1
- ^ S°, 138. J · K−1 · mol−1
- ^ ΔfH°, -20.63 kJ · mol−1
- ^ ΔfG°, -33.56 kJ · mol−1
- ^ S°, 205.79 J · K−1 · mol−1
- ^ Cp°, 34.23 J · K−1 · mol−1
- ^ ΔfH°, -39.7 kJ · mol−1
- ^ ΔfG°, -27.83 kJ · mol−1
- ^ S°, 121. J · K−1 · mol−1
- ^ ΔfH°, 142.7 kJ · mol−1
- ^ ΔfG°, 163.2 kJ · mol−1
- ^ S°, 238.93 J · K−1 · mol−1
- ^ Cp°, 39.20 J · K−1 · mol−1
- ^ ΔfH°, 125.9 kJ · mol−1
- ^ ΔfG°, 174.1 kJ · mol−1
- ^ S°, 146. J · K−1 · mol−1